4N25 1, OPTOELEMENTY

[ Pobierz całość w formacie PDF ]
Phototransistor
Industry Sta ndard Single Channel 6 Pin DIP Optocoupler
DEVICE TYPES
Dimensions in Inches (mm)
Part No.
CTR % Min.
Part No.
CTR % Min.
4N25
20
MCT2
20
3
2
1
pin one ID
4N26
20
MCT2E
20
Anode
Base
4N27
10
MCT270
50
.248 (6.30)
.256 (6.50)
1
6
4N28
10
MCT271
45–90
Cathode
2
5
Collector
4N35
100
MCT272
75–150
4
5
6
NC
3
4
Emitter
4N36
100
MCT273
125–250
.335 (8.50)
.343 (8.70)
4N37
100
MCT274
225–400
4N38
10
MCT275
70–90
.039
(1.00)
Min.
.
0
48 (0.45)
.022 (0.55)
.300 (7.62)
typ.
H11A1
50
MCT276
15–60
H11A2
20
MCT277
100
.130 (3.30)
.150 (
3
.81)
H11A3
20
°
typ.
18
°
H11A4
10
.114 (2.90)
.130
(3.0)
.031 (0.80) min.
H11A5
30
3
°
–9
°
.010 (.25)
typ.
.031 (0.80)
.035 (0.90)
.100 (2.54) typ.
.018 (0.45)
.022 (0.55)
FEATURES
• Interfaces with Common Logic Families
• Input-output Coupling Capacitance < 0.5 pF
• Industry Standard Dual-in-line 6-pin Package
• Field Effect Stable by TRIOS
.
3
00–.347
(7.62–8.81)
DESCRIPTION
®
This data sheet presents five families of Vishay Industry Standard
Single Channel Phototransistor Couplers. These families include the
4N25/26/27/28 types, the 4N35/36/37/38 couplers, the H11A1/A2/
A3/A4/A5, the MCT2/2E, and MCT270/271/272/273/274/275/276/
277 devices.Each optocoupler consists of Gallium Arsenide infra-
red LED and a silicon NPN phototransistor.
These couplers are Underwriters Laboratories (UL) listed to comply
with a 5300 V
Isolation Test Voltage
• Underwriters Laboratory File #E52744

RMS
DE
VDE #0884 Approval Available with Option 1
APPLICATIONS
• AC Mains Detection
• Reed Relay Driving
• Switch Mode Power Supply Feedback
• Telephone Ring Detection
• Logic Ground Isolation
• Logic Coupling with High Frequency Noise
Rejection
Isolation Test Voltage. This isolation performance
is accomplished through Vishay double molding isolation manufac-
turing process. Compliance to VDE 0884 partial discharge isolation
specification is available for these families by ordering option 1.
Phototransistor gain stability, in the presence of high isolation volt-
ages, is insured by incorporating a TRansparent lOn Shield
(TRIOS)
RMS
Notes:
on the phototransistor substrate. These isolation pro-
cesses and the Vishay IS09001 Quality program results in the high-
est isolation performance available for a commercial plastic
phototransistor optocoupler.
The devices are available in lead formed configuration suitable for
surface mounting and are available either on tape and reel, or in
standard tube shipping containers.
Designing with data sheet is covered in Application Note 45.
Document Number: 83717
www.vishay.com
Revision 17-August-01
2–53
4
• 5300 V
®
Maximum Ratings
T
A
=25
°
C
Emitter
Reverse Voltage .......................................................................................... 6.0 V
Forward Current ........................................................................................ 60 mA
Surge Current (t

10
µ
Detector
Collector-Emitter Breakdown Voltage........................................................... 70 V
Emitter-Base Breakdown Voltage ................................................................ 7.0 V
Collector Current ....................................................................................... 50 mA
Collector Current(t <1.0 ms).................................................................... 100 mA
Power Dissipation................................................................................... 150 mW
Package
Isolation Test Voltage.......................................................................... 5300 V
RMS
Creepage ..............................................................................................

7.0 mm
Clearance .............................................................................................

7.0 mm
0.4 mm
Comparative Tracking Index per DIN IEC 112/VDE0303, part 1 .................. 175
Isolation Resistance

V
=500 V,
T
=25
°
C...............................................................................10
12

IO
A
11
V
=500 V,
T
=100
°
C............................................................................ 10

IO
A
Storage Temperature................................................................ –55
°
C to +150
°
C
Operating Temperature ............................................................ –55
°
C to +100
°
C
Junction Temperature................................................................................ 100
°
C
Soldering Temperature (max. 10 s, dip soldering:
distance to seating plane

1.5 mm) ...................................................... 260
°
C
4N25/26/27/28—Characteristics
T
A
=25
°
C
Emitter
Symbol
Min.
Typ.
Max. Unit
Condition
Forward Voltage*
V
F

1.3
1.5
V
I
F
=50 mA
Reverse Current*
I
R

0.1
100
µ
A
V
R
=3.0 V
Capacitance
C
O

25

pF
V
R
=0
Detector
Breakdown Voltage*
Collector-Emitter
BV
CEO
30
——V
I
C
=1.0 mA
Emitter-Collector
BV
ECO
7.0
——
I
E
=100
µ
A
Collector-Base
BV
CBO
70
——
I
C
=100
µ
A
I
CEO
(dark)*
4N25/26/27
4N28


5.0
10
50
100
nA
V
CE
=10 V, (base open)
I
CBO
(dark)*


2.0
20
nA
V
CB
=10 V, (emitter open)
Capacitance, Collector-Emitter
C
CE

6.0

pF
V
CE
=0
Package
DC Current Transfer Ratio*
4N25/26
CTR
20
50

%
V
CE
=10 V,
I
F
=10 mA
4N27/28
10
30

Isolation Voltage*
4N25
V
IO
2500 ——V
Peak, 60 Hz
4N26/27
1500 ——
4N28
500
——
Saturation Voltage, Collector-Emitter
V
CE(sat)
——0.5
V
I
CE
=2.0 mA,
I
F
=50 mA
Resistance, Input to Output*
R
IO
100
——G

V
IO
=500 V
Coupling Capacitance
C
IO

0.5

pF
f=1.0 MHz
Rise and Fall Times
t
r
,
t
f

2.0

µ
s
I
F
=10 mA
V
=10 V,
R
=100

CE
L
* Indicates JEDEC registered values
Document Number: 83717
www.vishay.com
Revision 17-August-01
2–54
s)............................................................................... 2.5 A
Power Dissipation................................................................................... 100 mW
Isolation Thickness between Emitter and Detector ...............................
4N35/36/37/38—Characteristics
T
A
=25
°
C
Emitter
Symbol Min. Typ. Max. Unit Condition
Forward Voltage*
V
F
1.3
1.5
1.7
V
F
=10 mA
0.9
I
=10 mA,
T
=–55
°
C
F
A
Reverse Current*
I
R
0.1
10
µ
A
V
R
=6.0 V
Capacitance
C
O
25

pF
V
R
=0, f=1.0 MHz
Detector
Breakdown Voltage, Collector-Emitter*
4N35/36/37
BV
CEO
30
——V
I
C
=1.0 mA
4N38
80
——
Breakdown Voltage, Emitter-Collector*
BV
ECO
7.0
——V
I
E
=100
µ
A
Breakdown Voltage, Collector-Base*
4N35/36/37
BV
CBO
70
——V
I
C
=100
µ
A,
I
B
=1.0
µ
A
4N38
80
———
Leakage Current, Collector-Emitter*
4N35/36/37
I
CEO

5.0
50
nA
V
CE
=10 V,
I
F
=0
4N38
——50
V
CE
=60 V,
I
F
=0
Leakage Current, Collector-Emitter*
4N35/36/37
I
CEO
——500
µA
V
CE
=30 V,
I
F
=0,
T
A
=100
°
C
4N38

6.0

V
CE
=60 V,
I
F
=0,
T
A
=100
°
C
Capacitance, Collector-Emitter
C
CE

6.0

pF
V
CE
=0
Package
DC Current Transfer Ratio*
4N35/36/37
CTR
100
——%
V
CE
=10 V,
I
F
=10 mA,
4N38
20
——
V
CE
=1.0 V,
I
F
=20 mA
DC Current Transfer Ratio*
4N35/36/37
CTR
40
50

%
V
CE
=10 V,
I
F
=10 mA,
T
A
=–55 to 100
°
C
4N38


30
——
Resistance, Input to Output*
R
IO
10
11
——

V
IO
=500 V
Coupling Capacitance
C
IO

0.5

pF
f=1.0 MHz
Switching Time*
t
ON
,
t
OFF

10

µs
I
C
=2.0 mA,
R
L
=100
Ω,
V
CC
=10 V
* Indicates JEDEC registered value
H11A1 through H11A5—Characteristics
T
=25
°
C
Emitter
Symbol Min. Typ. Max. Unit Condition
Forward Voltage
H11A1–H11A4
V
F

1.1
1.5
V
I
F
=10 mA
H11A5

1.1
1.7
Reverse Current
I
R
——10
µ
A
V
R
=3.0 V
Capacitance
C
0

50

pF
V
R
=0, f=1.0 MHz
Detector
Breakdown Voltage, Collector-Emitter
BV
CEO
30
——V
I
C
=1.0 mA,
I
F
=0 mA
Breakdown Voltage, Emitter-Collector
BV
ECO
7.0
——V
I
E
=100
µ
A,
I
F
=0 mA
Breakdown Voltage, Collector-Base
BV
CBO
70
——V
I
C
=10
µ
A,
I
F
=0 mA
Leakage Current, Collector-Emitter
I
CEO

5.0
50
nA
V
CE
=10 V,
I
F
=0 mA
Capacitance, Collector-Emitter
C
CE

6.0

pF
V
CE
=0
Package
DC Current Transfer Ratio
H11A1
CTR
50
——%
V
CE
=10 V,
I
F
=10 mA
H11A2/3
20
——
H11A4
10
——
H11A5
30
——
Saturation Voltage, Collector-Emitter
V
CE
sat
——0.4
V
I
CE
=0.5 mA,
I
F
=10 mA
Capacitance, Input to Output
C
IO

0.5

pF

Switching Time
t
ON
,
t
OFF

3.0

µs
I
C
=2.0 mA,
R
L
=100
Ω,
V
CE
=10 V
Document Number: 83717
www.vishay.com
Revision 17-August-01
2–55
I
A
MCT2/MCT2E—Characteristics
T
A
=25
°
C
Emitter
Symbol Min. Typ. Max. Unit
Condition
Forward Voltage
V
F

1.1
1.5
V
I
F
=20 mA
Reverse Current
I
R
——10
µ
A
V
R
=3.0 V
Capacitance
C
O

25

pF
V
R
=0, f=1.0 MHz
Detector
Breakdown Voltage
Collector-Emitter BV
CEO
30
——V
I
C
=1.0 mA,
I
F
=0 mA
Emitter-Collector BV
ECO
7.0
——
I
E
=100
µ
A,
I
F
=0 mA
Collector-Base
BV
CBO
70
——
I
C
=10
µ
A,
I
F
=0 mA
Leakage Current
Collector-Emitter
I
CBO

5.0
50
nA
V
CE
=10 V,
I
F
=0
Collector-Base
I
CBO
——20

Capacitance, Collector-Emitter —
C
CE

10

pF
V
CE
=0
Package
DC Current Transfer Ratio
CTR
20
60

%
V
CE
=10 V,
I
F
=10 mA
Capacitance, Input to Output
C
IO

0.5

pF

Resistance, Input to Output
R
IO

100

G


Switching Time
t
ON
,
t
OFF

3.0

µs
I
C
=2.0 mA,
R
L
=100
Ω,
V
CE
=10 V
MCT270 through MCT277—Characteristics
T
A
=25
°
C
Emitter
Symbol Min. Typ. Max. Unit
Condition
Forward Voltage
V
F
——
1.5
V
I
F
=20 mA
Reverse Current
I
R
——
10
µ
A
V
R
=3.0 V
Capacitance
C
O

25

pF
V
R
=0, f=1.0 MHz
Detector
Breakdown Voltage
Collector-Emitter BV
CEO
30
——
V
I
C
=10
µ
A,
I
F
=0 mA
Emitter-Collector BV
ECO
7.0
——
I
E
=10
µ
A,
I
F
=0 mA
Collector-Base
BV
CBO
70
———
I
C
=10
µ
A,
I
F
=0 mA
Leakage Current, Collector-Emitter
I
CEO
——
50
nA
V
CE
=10 V,
I
F
=0 mA
Package
DC Current Transfer Ratio
MCT270
CTR
50
——
%
V
CE
=10 V,
I
F
=10 mA
MCT271
45

90
MCT272
75

150
MCT273
125

250
MCT274
225

400
MCT275
70

210
MCT276
15

60
MCT277
100
——
Current Transfer Ratio, Collector–Emitter
MCT271–276
CTR
CE
12.5 ——
%
V
CE
=0.4 V,
I
F
=16 mA
MCT277
40
——

Collector–Emitter Saturation Voltage
V
CE
sat
——0.4
V
I
CE
=2.0 mA,
I
F
=16 mA
Capacitance, Input to Output
C
IO

0.5

pF

10
12
Resistance, Input to Output
R
IO



V
IO
=500 VDC
Switching Time
MCT270/272
t
ON
,
t
OFF
——10
µ
s
I
C
=2.0 mA,
R
L
=100

,
V
CE
=5.0 V
MCT271
——7.0
MCT273
——20
MCT274
——25
MCT275/277
——15
MCT276
——3.5
Document Number: 83717
www.vishay.com
Revision 17-August-01
2–56
Figure 1. Forward Voltage vs. Forward Current
Figure 4. Normalized Non-saturated and Saturated
CTR,
T
A
=70
°
C vs. LED Current
1.4
1.5
Normalized to:
1.3
T
A
= –55
°
C
Vce=10 V, I
F
=10 mA, T
A
=25
°
C
CTRce(sat) Vce=0.4 V
1.2
1.0
T
A
= 25
°
C
1.1
T
A
=70
°
C
1.0
0.9
T
A
= 85
°
C
0.5
NCTR(SAT)
0.8
NCTR
0.7
0.0
.1
1
10
100
.1
1
10
100
I
F
- Forward Current - mA
I
F
- LED Current - mA
Figure 2. Normalized Non-saturated and Saturated
CTR,
T
A
=25
°
C vs. LED Current
Figure 5. Normalized Non-saturated and Saturated
CTR,
T
A
=85
°
C vs. LED Current
1.5
1.5
Normalized to:
Normalized to:
Vce=10 V, I
F
=10 mA, T
A
=25
°
C
Vce=10 V, I
F
=10 mA, T
A
=25
°
C
CTRce(sat) Vce=0.4 V
CTRce(sat) Vce = 0.4 V
1.0
1.0
T
A
=25
°
C
T
A
=85
°
C
0.5
0.5
NCTR(SAT)
NCTR(SAT)
NCTR
NCTR
0.0
0.0
.1
1
10
100
0
1 10 100
I
F
- LED Current - mA
I
F
- LED Current - mA
Figure 3. Normalized Non-saturated and Saturated
CTR,
T
A
=50
°
C vs. LED Current
Figure 6. Collector-emitter Current vs. Temperature
and LED Current
1.5
35
Normalized to:
Vce=10 V, I
F
=10 mA, T
A
=25
°
C
30
CTRce(sat) Vce=0.4 V
25
1.0
50
°
C
20
T
A
=50
°
C
70
°
C
15
25
°
C
85
°
C
0.5
10
NCTR(SAT)
5
NCTR
0.0
0
.1
1
10
100
0
10
20
30
40
50
60
I
F
- LED Current - mA
I
F
- LED Current - mA
Document Number: 83717
www.vishay.com
Revision 17-August-01
2–57
[ Pobierz całość w formacie PDF ]

  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • styleman.xlx.pl