4N25 1, OPTOELEMENTY
[ Pobierz całość w formacie PDF ] Phototransistor Industry Sta ndard Single Channel 6 Pin DIP Optocoupler DEVICE TYPES Dimensions in Inches (mm) Part No. CTR % Min. Part No. CTR % Min. 4N25 20 MCT2 20 3 2 1 pin one ID 4N26 20 MCT2E 20 Anode Base 4N27 10 MCT270 50 .248 (6.30) .256 (6.50) 1 6 4N28 10 MCT271 45–90 Cathode 2 5 Collector 4N35 100 MCT272 75–150 4 5 6 NC 3 4 Emitter 4N36 100 MCT273 125–250 .335 (8.50) .343 (8.70) 4N37 100 MCT274 225–400 4N38 10 MCT275 70–90 .039 (1.00) Min. . 0 48 (0.45) .022 (0.55) .300 (7.62) typ. H11A1 50 MCT276 15–60 H11A2 20 MCT277 100 .130 (3.30) .150 ( 3 .81) H11A3 20 ° typ. 18 ° H11A4 10 .114 (2.90) .130 (3.0) .031 (0.80) min. H11A5 30 3 ° –9 ° .010 (.25) typ. .031 (0.80) .035 (0.90) .100 (2.54) typ. .018 (0.45) .022 (0.55) FEATURES • Interfaces with Common Logic Families • Input-output Coupling Capacitance < 0.5 pF • Industry Standard Dual-in-line 6-pin Package • Field Effect Stable by TRIOS . 3 00–.347 (7.62–8.81) DESCRIPTION ® This data sheet presents five families of Vishay Industry Standard Single Channel Phototransistor Couplers. These families include the 4N25/26/27/28 types, the 4N35/36/37/38 couplers, the H11A1/A2/ A3/A4/A5, the MCT2/2E, and MCT270/271/272/273/274/275/276/ 277 devices.Each optocoupler consists of Gallium Arsenide infra- red LED and a silicon NPN phototransistor. These couplers are Underwriters Laboratories (UL) listed to comply with a 5300 V Isolation Test Voltage • Underwriters Laboratory File #E52744 • RMS DE VDE #0884 Approval Available with Option 1 APPLICATIONS • AC Mains Detection • Reed Relay Driving • Switch Mode Power Supply Feedback • Telephone Ring Detection • Logic Ground Isolation • Logic Coupling with High Frequency Noise Rejection Isolation Test Voltage. This isolation performance is accomplished through Vishay double molding isolation manufac- turing process. Compliance to VDE 0884 partial discharge isolation specification is available for these families by ordering option 1. Phototransistor gain stability, in the presence of high isolation volt- ages, is insured by incorporating a TRansparent lOn Shield (TRIOS) RMS Notes: on the phototransistor substrate. These isolation pro- cesses and the Vishay IS09001 Quality program results in the high- est isolation performance available for a commercial plastic phototransistor optocoupler. The devices are available in lead formed configuration suitable for surface mounting and are available either on tape and reel, or in standard tube shipping containers. Designing with data sheet is covered in Application Note 45. Document Number: 83717 www.vishay.com Revision 17-August-01 2–53 4 • 5300 V ® Maximum Ratings T A =25 ° C Emitter Reverse Voltage .......................................................................................... 6.0 V Forward Current ........................................................................................ 60 mA Surge Current (t ≤ 10 µ Detector Collector-Emitter Breakdown Voltage........................................................... 70 V Emitter-Base Breakdown Voltage ................................................................ 7.0 V Collector Current ....................................................................................... 50 mA Collector Current(t <1.0 ms).................................................................... 100 mA Power Dissipation................................................................................... 150 mW Package Isolation Test Voltage.......................................................................... 5300 V RMS Creepage .............................................................................................. ≥ 7.0 mm Clearance ............................................................................................. ≥ 7.0 mm 0.4 mm Comparative Tracking Index per DIN IEC 112/VDE0303, part 1 .................. 175 Isolation Resistance ≥ V =500 V, T =25 ° C...............................................................................10 12 Ω IO A 11 V =500 V, T =100 ° C............................................................................ 10 Ω IO A Storage Temperature................................................................ –55 ° C to +150 ° C Operating Temperature ............................................................ –55 ° C to +100 ° C Junction Temperature................................................................................ 100 ° C Soldering Temperature (max. 10 s, dip soldering: distance to seating plane ≥ 1.5 mm) ...................................................... 260 ° C 4N25/26/27/28—Characteristics T A =25 ° C Emitter Symbol Min. Typ. Max. Unit Condition Forward Voltage* V F — 1.3 1.5 V I F =50 mA Reverse Current* I R — 0.1 100 µ A V R =3.0 V Capacitance C O — 25 — pF V R =0 Detector Breakdown Voltage* Collector-Emitter BV CEO 30 ——V I C =1.0 mA Emitter-Collector BV ECO 7.0 —— I E =100 µ A Collector-Base BV CBO 70 —— I C =100 µ A I CEO (dark)* 4N25/26/27 4N28 — — 5.0 10 50 100 nA V CE =10 V, (base open) I CBO (dark)* — — 2.0 20 nA V CB =10 V, (emitter open) Capacitance, Collector-Emitter C CE — 6.0 — pF V CE =0 Package DC Current Transfer Ratio* 4N25/26 CTR 20 50 — % V CE =10 V, I F =10 mA 4N27/28 10 30 — Isolation Voltage* 4N25 V IO 2500 ——V Peak, 60 Hz 4N26/27 1500 —— 4N28 500 —— Saturation Voltage, Collector-Emitter V CE(sat) ——0.5 V I CE =2.0 mA, I F =50 mA Resistance, Input to Output* R IO 100 ——G Ω V IO =500 V Coupling Capacitance C IO — 0.5 — pF f=1.0 MHz Rise and Fall Times t r , t f — 2.0 — µ s I F =10 mA V =10 V, R =100 Ω CE L * Indicates JEDEC registered values Document Number: 83717 www.vishay.com Revision 17-August-01 2–54 s)............................................................................... 2.5 A Power Dissipation................................................................................... 100 mW Isolation Thickness between Emitter and Detector ............................... 4N35/36/37/38—Characteristics T A =25 ° C Emitter Symbol Min. Typ. Max. Unit Condition Forward Voltage* V F 1.3 1.5 1.7 V F =10 mA 0.9 I =10 mA, T =–55 ° C F A Reverse Current* I R 0.1 10 µ A V R =6.0 V Capacitance C O 25 — pF V R =0, f=1.0 MHz Detector Breakdown Voltage, Collector-Emitter* 4N35/36/37 BV CEO 30 ——V I C =1.0 mA 4N38 80 —— Breakdown Voltage, Emitter-Collector* BV ECO 7.0 ——V I E =100 µ A Breakdown Voltage, Collector-Base* 4N35/36/37 BV CBO 70 ——V I C =100 µ A, I B =1.0 µ A 4N38 80 ——— Leakage Current, Collector-Emitter* 4N35/36/37 I CEO — 5.0 50 nA V CE =10 V, I F =0 4N38 ——50 V CE =60 V, I F =0 Leakage Current, Collector-Emitter* 4N35/36/37 I CEO ——500 µA V CE =30 V, I F =0, T A =100 ° C 4N38 — 6.0 — V CE =60 V, I F =0, T A =100 ° C Capacitance, Collector-Emitter C CE — 6.0 — pF V CE =0 Package DC Current Transfer Ratio* 4N35/36/37 CTR 100 ——% V CE =10 V, I F =10 mA, 4N38 20 —— V CE =1.0 V, I F =20 mA DC Current Transfer Ratio* 4N35/36/37 CTR 40 50 — % V CE =10 V, I F =10 mA, T A =–55 to 100 ° C 4N38 — — 30 —— Resistance, Input to Output* R IO 10 11 —— Ω V IO =500 V Coupling Capacitance C IO — 0.5 — pF f=1.0 MHz Switching Time* t ON , t OFF — 10 — µs I C =2.0 mA, R L =100 Ω, V CC =10 V * Indicates JEDEC registered value H11A1 through H11A5—Characteristics T =25 ° C Emitter Symbol Min. Typ. Max. Unit Condition Forward Voltage H11A1–H11A4 V F — 1.1 1.5 V I F =10 mA H11A5 — 1.1 1.7 Reverse Current I R ——10 µ A V R =3.0 V Capacitance C 0 — 50 — pF V R =0, f=1.0 MHz Detector Breakdown Voltage, Collector-Emitter BV CEO 30 ——V I C =1.0 mA, I F =0 mA Breakdown Voltage, Emitter-Collector BV ECO 7.0 ——V I E =100 µ A, I F =0 mA Breakdown Voltage, Collector-Base BV CBO 70 ——V I C =10 µ A, I F =0 mA Leakage Current, Collector-Emitter I CEO — 5.0 50 nA V CE =10 V, I F =0 mA Capacitance, Collector-Emitter C CE — 6.0 — pF V CE =0 Package DC Current Transfer Ratio H11A1 CTR 50 ——% V CE =10 V, I F =10 mA H11A2/3 20 —— H11A4 10 —— H11A5 30 —— Saturation Voltage, Collector-Emitter V CE sat ——0.4 V I CE =0.5 mA, I F =10 mA Capacitance, Input to Output C IO — 0.5 — pF — Switching Time t ON , t OFF — 3.0 — µs I C =2.0 mA, R L =100 Ω, V CE =10 V Document Number: 83717 www.vishay.com Revision 17-August-01 2–55 I A MCT2/MCT2E—Characteristics T A =25 ° C Emitter Symbol Min. Typ. Max. Unit Condition Forward Voltage V F — 1.1 1.5 V I F =20 mA Reverse Current I R ——10 µ A V R =3.0 V Capacitance C O — 25 — pF V R =0, f=1.0 MHz Detector Breakdown Voltage Collector-Emitter BV CEO 30 ——V I C =1.0 mA, I F =0 mA Emitter-Collector BV ECO 7.0 —— I E =100 µ A, I F =0 mA Collector-Base BV CBO 70 —— I C =10 µ A, I F =0 mA Leakage Current Collector-Emitter I CBO — 5.0 50 nA V CE =10 V, I F =0 Collector-Base I CBO ——20 — Capacitance, Collector-Emitter — C CE — 10 — pF V CE =0 Package DC Current Transfer Ratio CTR 20 60 — % V CE =10 V, I F =10 mA Capacitance, Input to Output C IO — 0.5 — pF — Resistance, Input to Output R IO — 100 — G Ω — Switching Time t ON , t OFF — 3.0 — µs I C =2.0 mA, R L =100 Ω, V CE =10 V MCT270 through MCT277—Characteristics T A =25 ° C Emitter Symbol Min. Typ. Max. Unit Condition Forward Voltage V F —— 1.5 V I F =20 mA Reverse Current I R —— 10 µ A V R =3.0 V Capacitance C O — 25 — pF V R =0, f=1.0 MHz Detector Breakdown Voltage Collector-Emitter BV CEO 30 —— V I C =10 µ A, I F =0 mA Emitter-Collector BV ECO 7.0 —— I E =10 µ A, I F =0 mA Collector-Base BV CBO 70 ——— I C =10 µ A, I F =0 mA Leakage Current, Collector-Emitter I CEO —— 50 nA V CE =10 V, I F =0 mA Package DC Current Transfer Ratio MCT270 CTR 50 —— % V CE =10 V, I F =10 mA MCT271 45 — 90 MCT272 75 — 150 MCT273 125 — 250 MCT274 225 — 400 MCT275 70 — 210 MCT276 15 — 60 MCT277 100 —— Current Transfer Ratio, Collector–Emitter MCT271–276 CTR CE 12.5 —— % V CE =0.4 V, I F =16 mA MCT277 40 —— — Collector–Emitter Saturation Voltage V CE sat ——0.4 V I CE =2.0 mA, I F =16 mA Capacitance, Input to Output C IO — 0.5 — pF — 10 12 Resistance, Input to Output R IO — — Ω V IO =500 VDC Switching Time MCT270/272 t ON , t OFF ——10 µ s I C =2.0 mA, R L =100 Ω , V CE =5.0 V MCT271 ——7.0 MCT273 ——20 MCT274 ——25 MCT275/277 ——15 MCT276 ——3.5 Document Number: 83717 www.vishay.com Revision 17-August-01 2–56 Figure 1. Forward Voltage vs. Forward Current Figure 4. Normalized Non-saturated and Saturated CTR, T A =70 ° C vs. LED Current 1.4 1.5 Normalized to: 1.3 T A = –55 ° C Vce=10 V, I F =10 mA, T A =25 ° C CTRce(sat) Vce=0.4 V 1.2 1.0 T A = 25 ° C 1.1 T A =70 ° C 1.0 0.9 T A = 85 ° C 0.5 NCTR(SAT) 0.8 NCTR 0.7 0.0 .1 1 10 100 .1 1 10 100 I F - Forward Current - mA I F - LED Current - mA Figure 2. Normalized Non-saturated and Saturated CTR, T A =25 ° C vs. LED Current Figure 5. Normalized Non-saturated and Saturated CTR, T A =85 ° C vs. LED Current 1.5 1.5 Normalized to: Normalized to: Vce=10 V, I F =10 mA, T A =25 ° C Vce=10 V, I F =10 mA, T A =25 ° C CTRce(sat) Vce=0.4 V CTRce(sat) Vce = 0.4 V 1.0 1.0 T A =25 ° C T A =85 ° C 0.5 0.5 NCTR(SAT) NCTR(SAT) NCTR NCTR 0.0 0.0 .1 1 10 100 0 1 10 100 I F - LED Current - mA I F - LED Current - mA Figure 3. Normalized Non-saturated and Saturated CTR, T A =50 ° C vs. LED Current Figure 6. Collector-emitter Current vs. Temperature and LED Current 1.5 35 Normalized to: Vce=10 V, I F =10 mA, T A =25 ° C 30 CTRce(sat) Vce=0.4 V 25 1.0 50 ° C 20 T A =50 ° C 70 ° C 15 25 ° C 85 ° C 0.5 10 NCTR(SAT) 5 NCTR 0.0 0 .1 1 10 100 0 10 20 30 40 50 60 I F - LED Current - mA I F - LED Current - mA Document Number: 83717 www.vishay.com Revision 17-August-01 2–57
[ Pobierz całość w formacie PDF ]
zanotowane.pldoc.pisz.plpdf.pisz.plstyleman.xlx.pl
|