4N25, OPTOELEMENTY

[ Pobierz całość w formacie PDF ]
Agilent 4N25
Phototransistor Optocoupler
General Purpose Type
Data Sheet
s at
V
CE
= 10 V, I
C
= 2 mA, R
L
= 100
m
W
)
Description
The 4N25 is an optocoupler for
general purpose applications. It
contains a light emitting diode
optically coupled to a photo-
transistor. It is packaged in a 6-pin
DIP package and available in wide-
lead spacing option and lead bend
SMD option. Response time, t
r
, is
typically 3
Ordering Information
Specify part number followed by
Option Number (if desired).
• Current Transfer Ratio
(CTR: min. 20% at I
F
= 10 mA,
V
CE
= 10 V)
• Input-output isolation voltage
(V
iso
= 2500 Vrms)
• Dual-in-line package
• UL approved
• CSA approved
• VDE approved
• Options available:
– Leads with 0.4" (10.16 mm)
spacing (W00)
– Leads bends for surface
mounting (300)
– Tape and reel for SMD (500)
– VDE 0884 approvals (060)
4N25-
XXX
Option Number
s and minimum CTR is
20% at input current of 10 mA.
m
060 = VDE0884 Option
W00 = 0.4" Lead Spacing Option
300 = Lead Bend SMD Option
500 = Tape and Reel Packaging
Option
Functional Diagram
Schematic
Applications
• I/O interfaces for computers
• System appliances, measuring
instruments
• Signal transmission between
circuits of different potentials and
impedances
PIN NO. AND INTERNAL
CONNECTION DIAGRAM
6
5
4
1
I
F
6
ANODE
BASE
+
V
F

CATHODE
I
C
2
5
COLLECTOR
1
2
3
4
EMITTER
1. ANODE
2. CATHODE
3. NC
4. EMITTER
5. COLLECTOR
6. BASE
CAUTION:
It is advised that normal static precautions be taken in handling and assembly of this component to
prevent damage and/or degradation which may be induced by ESD.
Features
• Response time (t
r
: typ., 3
Package Outline Drawings
TYPE NUMBER
7.3 ± 0.5
(0.287)
7.62 ± 0.3
(0.3)
6
5
4
OPTION CODE
FOR OPTION 060
ONLY
3.5 ± 0.5
(0.138)
A 4N25 V
6.5 ± 0.5
(0.256)
YYWW
3.3 ± 0.5
(0.13)
0.5
(0.02)
TYP.
PIN ONE DOT
2.8 ± 0.5
(0.110)
DATE CODE
1
2
3
2.54 ± 0.25
(0.1)
0.5 ± 0.1
(0.02)
0.35 +0.15/-0.10
(0.14)
DIMENSIONS IN MILLIMETERS AND (INCHES)
7.62 ~ 9.98
Package Outline – Option W00
7.3 ± 0.5
(0.287)
7.62 ± 0.3
(0.3)
3.5 ± 0.5
(0.138)
6.5 ± 0.5
(0.256)
6.9 ± 0.5
(0.272)
2.8 ± 0.5
(0.110)
2.3 ± 0.5
(0.09)
0.35 +0.15/-0.10
(0.014)
2.54 ± 0.25
(0.1)
0
.5 ± 0.1
(0.02)
10.16 ± 0.5
(0.4)
DIMENSIONS IN MILLIMETERS AND (INCHES)
Package Outline – Option 300
7.3 ± 0.5
(0.287)
7.62 ± 0.3
(0.3)
3.5 ± 0.5
(0.138)
0.35 +0.15/-0.10
(0.14)
6.5 ± 0.5
(0.256)
1.2 ± 0.1
(0.047)
2.54 ± 0.25
(0.1)
0.35 ± 0.25
(0.014)
1
.0 ± 0.25
(0.039)
10.16 ± 0.3
(0.4)
DIMENSIONS IN MILLIMETERS AND (INCHES)
2
Absolute Maximum Ratings
Storage Temperature, T
S
–55˚C to +150˚C
Operating Temperature, T
A
–55˚C to +100˚C
Lead Solder Temperature, max.
260˚C for 10 s
(1.6 mm below seating plane)
Average Forward Current, I
F
80 mA
Reverse Input Voltage, V
R
6 V
Input Power Dissipation, P
I
150 mW
Collector Current, I
C
100 mA
Collector-Emitter Voltage, V
CEO
30 V
Emitter-Collector Voltage, V
ECO
7 V
Collector-Base Voltage, V
CBO
70 V
Collector Power Dissipation
150 mW
Total Power Dissipation
250 mW
Isolation Voltage, V
iso
(AC for 1 minute, R.H. = 40 ~ 60%)
2500 Vrms
Electrical Specifications (T
A
= 25˚C)
Parameter
Symbol
Min.
Typ.
Max.
Units
Test Conditions
Forward Voltage
V
F

1.2
1.5
V
I
F
= 10 mA
Reverse Current
I
R


10
m
A
V
R
= 4 V
Terminal Capacitance
C
t

50

pF
V = 0, f = 1 KHz
Collector Dark Current
I
CEO


50
nA
V
CE
= 10 V, I
F
= 0
Collector-Emitter Breakdown Voltage BV
CEO
30


V
I
C
= 0.1 mA, I
F
= 0
Emitter-Collector Breakdown Voltage BV
ECO
7


V
I
E
= 10
m
A, I
F
= 0
Collector-Base Breakdown Voltage
BV
CBO
70


V
I
C
= 0.1 mA, I
F
= 0
Collector Current
I
C
2


mA
I
F
= 10 mA
*Current Transfer Ratio
CTR
20


%
V
CE
= 10 V
Collector-Emitter Saturation Voltage
V
CE(sat)

0.1
0.5
V
I
F
= 50 mA, I
C
= 2 mA
Response Time (Rise)
t
r

3

m
s
V
CE
= 10 V, I
C
= 2 mA
Response Time (Fall)
t
f

3

m
s
R
L
= 100
W
Isolation Resistance
R
iso
5 x 10
10
1 x 10
11

W
DC 500 V
40 ~ 60% R.H.
Floating Capacitance
C
f

1

pF
V = 0, f = 1 MHz
* CTR = x 100%
I
C
I
F
3
100
200
500
T
A
= 75°C
80
200
T
A
= 50°C
T
A
= 25°C
T
A
= 0°C
T
A
= -25°C
150
100
60
50
100
20
40
10
5
20
50
2
0
-55
-25
0
25
50
75
100
125
-55
-25
0
25
50
75
100
125
1
0
0.5
1.0
1.5
2.0
2.5
3.0
T
A
– AMBIENT TEMPERATURE – °C
T
A
– AMBIENT TEMPERATURE – °C
V
F
– FORWARD VOLTAGE – V
Figure 1. Forward current vs. temperature.
Figure 2. Collector power dissipation vs.
temperature.
Figure 3. Forward current vs. forward voltage.
50
15
P
C
(MAX.)
300
V
CE
= 10 V
T
A
= 25°C
T
A
= 25°C I
F
= 40 mA
I
F
= 10 mA
V
CE
= 10 V
40
10
I
F
= 30 mA
200
30
20
I
F
= 20 mA
5
100
R
BE
=
I
F
= 10 mA
I
F
= 5 mA
10
0
500 k
W
100 k
W
0
0
0.1
0.2
0.5
1
2
5
10
20 50
100
0
5
10
15
-55
-25
0
25
50
75
100
I
F
– FORWARD CURRENT – mA
V
CE
– COLLECTOR-EMITTER VOLTAGE – V
T
A
– AMBIENT TEMPERATURE – °C
Figure 4. Current transfer ratio vs. forward
current.
Figure 5. Collector current vs. collector-
emitter voltage.
Figure 6. Relative current transfer ratio vs.
temperature.
0.3
I
F
= 50 mA
10
-6
100
V
CE
= 10 V
I
C
= 2 mA
T
A
= 25°C
5
tf
tr
V
CE
= 10 V
I
C
= 2 mA
50
10
-7
5
td
20
10
-8
0.2
5
10
10
-9
5
5
10
-10
2
5
ts
0.1
1
10
-11
5
0.5
10
-12
5
0.2
-55
-25
0
25
50
75
100
10
-13
-55
T
A
– AMBIENT TEMPERATURE – °C
-25
0
20
40
80
100
125
0.05
0.1
0.2
0.5
1
2
5
10
20 50
T
A
– AMBIENT TEMPERATURE – °C
R
L
– LOAD RESISTANCE – k
W
Figure 7. Collector-emitter saturation
voltage vs. temperature.
Figure 8. Collector dark current vs.
temperature.
Figure 9. Response time vs. load resistance.
4
0
0.1
0
5
V
CE
= 5 V
I
C
= 2 mA
T
A
= 25°C
7
T
A
= 25°C
0
6
5
-5
4
R
L
= 10 k
W
3
-10
R
L
= 1 k
W
2
R
L
= 100
W
-15
1
-20
0.5
1
2
5
10
20
50
100 200
500
0
0
5
10
15
20
25
30
f – FREQUENCY – kHz
I
F
– FORWARD CURRENT – mA
Figure 10. Frequency response.
Figure 11. Collector-emitter saturation
voltage vs. forward current.
Test Circuit for Response Time
Test Circuit for Frequency Response
V
CC
V
CC
R
D
R
L
R
L
R
D
OUTPUT
INPUT
OUTPUT
~
INPUT
OUTPUT
10%
90%
t
d
t
s
t
t
f
5
r
[ Pobierz całość w formacie PDF ]

  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • styleman.xlx.pl