4N25, OPTOELEMENTY
[ Pobierz całość w formacie PDF ] Agilent 4N25 Phototransistor Optocoupler General Purpose Type Data Sheet s at V CE = 10 V, I C = 2 mA, R L = 100 m W ) Description The 4N25 is an optocoupler for general purpose applications. It contains a light emitting diode optically coupled to a photo- transistor. It is packaged in a 6-pin DIP package and available in wide- lead spacing option and lead bend SMD option. Response time, t r , is typically 3 Ordering Information Specify part number followed by Option Number (if desired). • Current Transfer Ratio (CTR: min. 20% at I F = 10 mA, V CE = 10 V) • Input-output isolation voltage (V iso = 2500 Vrms) • Dual-in-line package • UL approved • CSA approved • VDE approved • Options available: – Leads with 0.4" (10.16 mm) spacing (W00) – Leads bends for surface mounting (300) – Tape and reel for SMD (500) – VDE 0884 approvals (060) 4N25- XXX Option Number s and minimum CTR is 20% at input current of 10 mA. m 060 = VDE0884 Option W00 = 0.4" Lead Spacing Option 300 = Lead Bend SMD Option 500 = Tape and Reel Packaging Option Functional Diagram Schematic Applications • I/O interfaces for computers • System appliances, measuring instruments • Signal transmission between circuits of different potentials and impedances PIN NO. AND INTERNAL CONNECTION DIAGRAM 6 5 4 1 I F 6 ANODE BASE + V F – CATHODE I C 2 5 COLLECTOR 1 2 3 4 EMITTER 1. ANODE 2. CATHODE 3. NC 4. EMITTER 5. COLLECTOR 6. BASE CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. Features • Response time (t r : typ., 3 Package Outline Drawings TYPE NUMBER 7.3 ± 0.5 (0.287) 7.62 ± 0.3 (0.3) 6 5 4 OPTION CODE FOR OPTION 060 ONLY 3.5 ± 0.5 (0.138) A 4N25 V 6.5 ± 0.5 (0.256) YYWW 3.3 ± 0.5 (0.13) 0.5 (0.02) TYP. PIN ONE DOT 2.8 ± 0.5 (0.110) DATE CODE 1 2 3 2.54 ± 0.25 (0.1) 0.5 ± 0.1 (0.02) 0.35 +0.15/-0.10 (0.14) DIMENSIONS IN MILLIMETERS AND (INCHES) 7.62 ~ 9.98 Package Outline – Option W00 7.3 ± 0.5 (0.287) 7.62 ± 0.3 (0.3) 3.5 ± 0.5 (0.138) 6.5 ± 0.5 (0.256) 6.9 ± 0.5 (0.272) 2.8 ± 0.5 (0.110) 2.3 ± 0.5 (0.09) 0.35 +0.15/-0.10 (0.014) 2.54 ± 0.25 (0.1) 0 .5 ± 0.1 (0.02) 10.16 ± 0.5 (0.4) DIMENSIONS IN MILLIMETERS AND (INCHES) Package Outline – Option 300 7.3 ± 0.5 (0.287) 7.62 ± 0.3 (0.3) 3.5 ± 0.5 (0.138) 0.35 +0.15/-0.10 (0.14) 6.5 ± 0.5 (0.256) 1.2 ± 0.1 (0.047) 2.54 ± 0.25 (0.1) 0.35 ± 0.25 (0.014) 1 .0 ± 0.25 (0.039) 10.16 ± 0.3 (0.4) DIMENSIONS IN MILLIMETERS AND (INCHES) 2 Absolute Maximum Ratings Storage Temperature, T S –55˚C to +150˚C Operating Temperature, T A –55˚C to +100˚C Lead Solder Temperature, max. 260˚C for 10 s (1.6 mm below seating plane) Average Forward Current, I F 80 mA Reverse Input Voltage, V R 6 V Input Power Dissipation, P I 150 mW Collector Current, I C 100 mA Collector-Emitter Voltage, V CEO 30 V Emitter-Collector Voltage, V ECO 7 V Collector-Base Voltage, V CBO 70 V Collector Power Dissipation 150 mW Total Power Dissipation 250 mW Isolation Voltage, V iso (AC for 1 minute, R.H. = 40 ~ 60%) 2500 Vrms Electrical Specifications (T A = 25˚C) Parameter Symbol Min. Typ. Max. Units Test Conditions Forward Voltage V F – 1.2 1.5 V I F = 10 mA Reverse Current I R – – 10 m A V R = 4 V Terminal Capacitance C t – 50 – pF V = 0, f = 1 KHz Collector Dark Current I CEO – – 50 nA V CE = 10 V, I F = 0 Collector-Emitter Breakdown Voltage BV CEO 30 – – V I C = 0.1 mA, I F = 0 Emitter-Collector Breakdown Voltage BV ECO 7 – – V I E = 10 m A, I F = 0 Collector-Base Breakdown Voltage BV CBO 70 – – V I C = 0.1 mA, I F = 0 Collector Current I C 2 – – mA I F = 10 mA *Current Transfer Ratio CTR 20 – – % V CE = 10 V Collector-Emitter Saturation Voltage V CE(sat) – 0.1 0.5 V I F = 50 mA, I C = 2 mA Response Time (Rise) t r – 3 – m s V CE = 10 V, I C = 2 mA Response Time (Fall) t f – 3 – m s R L = 100 W Isolation Resistance R iso 5 x 10 10 1 x 10 11 – W DC 500 V 40 ~ 60% R.H. Floating Capacitance C f – 1 – pF V = 0, f = 1 MHz * CTR = x 100% I C I F 3 100 200 500 T A = 75°C 80 200 T A = 50°C T A = 25°C T A = 0°C T A = -25°C 150 100 60 50 100 20 40 10 5 20 50 2 0 -55 -25 0 25 50 75 100 125 -55 -25 0 25 50 75 100 125 1 0 0.5 1.0 1.5 2.0 2.5 3.0 T A – AMBIENT TEMPERATURE – °C T A – AMBIENT TEMPERATURE – °C V F – FORWARD VOLTAGE – V Figure 1. Forward current vs. temperature. Figure 2. Collector power dissipation vs. temperature. Figure 3. Forward current vs. forward voltage. 50 15 P C (MAX.) 300 V CE = 10 V T A = 25°C T A = 25°C I F = 40 mA I F = 10 mA V CE = 10 V 40 10 I F = 30 mA 200 30 20 I F = 20 mA 5 100 R BE = I F = 10 mA I F = 5 mA 10 0 500 k W 100 k W 0 0 0.1 0.2 0.5 1 2 5 10 20 50 100 0 5 10 15 -55 -25 0 25 50 75 100 I F – FORWARD CURRENT – mA V CE – COLLECTOR-EMITTER VOLTAGE – V T A – AMBIENT TEMPERATURE – °C Figure 4. Current transfer ratio vs. forward current. Figure 5. Collector current vs. collector- emitter voltage. Figure 6. Relative current transfer ratio vs. temperature. 0.3 I F = 50 mA 10 -6 100 V CE = 10 V I C = 2 mA T A = 25°C 5 tf tr V CE = 10 V I C = 2 mA 50 10 -7 5 td 20 10 -8 0.2 5 10 10 -9 5 5 10 -10 2 5 ts 0.1 1 10 -11 5 0.5 10 -12 5 0.2 -55 -25 0 25 50 75 100 10 -13 -55 T A – AMBIENT TEMPERATURE – °C -25 0 20 40 80 100 125 0.05 0.1 0.2 0.5 1 2 5 10 20 50 T A – AMBIENT TEMPERATURE – °C R L – LOAD RESISTANCE – k W Figure 7. Collector-emitter saturation voltage vs. temperature. Figure 8. Collector dark current vs. temperature. Figure 9. Response time vs. load resistance. 4 0 0.1 0 5 V CE = 5 V I C = 2 mA T A = 25°C 7 T A = 25°C 0 6 5 -5 4 R L = 10 k W 3 -10 R L = 1 k W 2 R L = 100 W -15 1 -20 0.5 1 2 5 10 20 50 100 200 500 0 0 5 10 15 20 25 30 f – FREQUENCY – kHz I F – FORWARD CURRENT – mA Figure 10. Frequency response. Figure 11. Collector-emitter saturation voltage vs. forward current. Test Circuit for Response Time Test Circuit for Frequency Response V CC V CC R D R L R L R D OUTPUT INPUT OUTPUT ~ INPUT OUTPUT 10% 90% t d t s t t f 5 r
[ Pobierz całość w formacie PDF ]
zanotowane.pldoc.pisz.plpdf.pisz.plstyleman.xlx.pl
|